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Abstract

We have used various optical and optically detected magne_tic resonance techniques to
characterize excited states in Cg, in ioluené/polystyrene (T/PS) glass and C,o films produced by
evaporation. In Cg: T/PS glass at 4K we found long lived (~5 ms) triplet excitons which
recombine radiatively with a linear kinetics. Their relatively small zero-field-splitting (ZFS)
parameters indicate delocalization over the entire Cgo moiecule. In Cy film, however, we found
both neutral and charged excitations, with bimolecular recombination kinetics. The neutral
photoexcitations are more delocalized triplets with smaller ZFS, whereas the charge carriers are
spin !4 excitations which we identified as Cy,* due to their optical transitions and associated

photoinduced electroabsorption.
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Most dramatically, Cg films show
superconductivity at T, as high as 47K [2,3} when doped with alkali metals, The structure of
Cgo and its aromaticity have been convincingly demonstrated with good agreement between

experiment and theory [4].' Photoexcitation (or photo-doping) provides a means of charge

injection at a very low concentration and this may help in separating intramolecular and

intermolecular interactions in Cg, films, Although several studies of excited states in Cg,
solutions have been recently reported [5-8], the nature of the photoexcitations in Cgy solids,

where the intermolecular interaction is more important, have yet to be identified [9-12).

In this work we characterize the photoexcitations in Cg, in toulene/polystyrene (T/PS)
glass and thin films produced by evaporation, using various optical and magneto-optical
techniques. They include pbotomodulation (PM), photoluminescence (PL), and their optically
detected magnetic resonance: the absorption detected magnetic resonance (ADMR) and the PL
detected magnetic resonance (PDMR), respectively. We measured in Cyy: T/PS glass long lived
(~Sms) triplet excitons with photoinduced absorption (PA) bands in the triplet manifold at 1.65
and 1.8 eV, respectively, which recombine with linear kinetics. These triplets give rise to a
triplet PL component and have relatively small zero-field-splitting (ZFS) pararneters of D =
0.0115 cm™ and E = 0.0008 cm™, respectively, indicating delocalization over the entire C,
molecule. In Cq films, however, we measured both neutral and charged excitations, with
bimolecular recombination kinetics. The neutral excitations form more delocalized triplet

excitons with somewhat different PA bands and smaller ZFS parameters (D = 0.0098 cm™)
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on C,o energy levels calculation [13] we identify the charged photoexcitations as C,’.

Live =
The PM and PL spectra have been excxted by en'Ar* laser bemat458 (papm)-with
2 Pt beomn ag —
intensity 1,_‘9?400 mWem2Imodulated "at frequency T ranging from 20 Hz to 50 kHz by an

mat— S —————————

@ modulator/” The PJ. from the sample and the transmxsslon of a cw lamp (probe
___~

’.fc ’ },- V7 U’OC ’)
beam) were dispersed by a 4 met. monochromator and measured by various solid state detectors

f)
in the spectral range of 0.3 to 2.7 ¢V. For the ADMR measurements the pump and probe beams

constantly illunﬁnatr_%xe sample mounted in a high Q microwave cavity at 3 GHz equipped with
. -P/ e
optical windows and a superconducting magnet producing a field H up to 3 Teshrfc;owavc

Wy A
W e) resonant absorptiong modulated at a frequency between, 20 to 4 KHzﬂcads to small

whicS 64 £
changef #7 in the transmissiontr Eroporuonal to @ the change in Wt}lf
T (27
produced by the pump beam. Sn is induced by transitions in the\ﬁvavc range that e spin-
23
dependent recombination rates. Wxth suitable signal averaging, the system §T/T sensitivi was

TR
about 107, ,@_?'D\' we measure changes JL in the PL intensity L with scnsmvxtijL - lO’e—, N

m ““la/f ™

3., Two types of ADMR (PDRM) spectra were obtained: the H-ADMR spectrum, in which 6T
(SL) is measured at a fixed probe wavelength A while sweeping H, and the P-ADMR rpectrum

in wluch 8T is measured at a constant H, in resonance, while A (probe) is varied. b

A S -

Jreen
* e&CIRt v ome -l fem f-&mcc\ UJ\usf {e, wel f 7 T/V Por - N
61”4 “/”wrﬂ"* wts Ledd to. \

Purified C, powder, with purity better than 99%, as established by Raman scattering

spectroscopy [14], was mixed in a solution of degassed toluene/polystyrene which was
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2 pm) was eontrolled by the deposition time, X-ray diffraction and low resolution atomic force

3 i micrographs showed essentially amorphous to nanocrystalline type samples.

;&V ‘The optical and magneto-optical measurements of Cqq: T/PS glass at 4K are shown in Fig.
3‘_‘;—‘1 " The PM spectrum contains a strong PA band (T;) which peaks at 1.65 eV [7,8] and a
?\: shoulder (T,) at 1.8 eV. Both PA bands increase linearly with I; showing monomolecular
?\,: recombination kinetics. The H-ADMR spectrum at 1.65 eV (Fig. 1, lower inset) shows a 200
“‘§ G wide triplet powder pattem at *full fild” (Am, = +1) around H = 1071 G with sn/n = -6

x 103, and a narrow (5 G) signal at “half field” (Am, = +2) peaked at 531 G. To correlate the
ApMR and PM spectra, we measured the P-ADMR spectra at 1010G (full field) and 531 G (half
field), respectively, as shown in Fig. 1. Since the P-ADMR and PM spectra in Fig. 1 are
identical, we conclude that the two PA bands in the.PM spectrum are due to photoinduced triplet
transitions. We note that the H-ADMR triplet powder pattern at full field is not simply an
integration display of a standard thermalized triplet LESR lineshape [6], since transition
probabilities as well as changes in the recombination rates among the triplet sublevels, are
involved {16]. However, an accurate measure of the triplet ZFS parameters can be still obtained
by taking the derivative of the H-ADMR spectrum [16]. Fﬁ:m the six singularitics, shown as
arrows in Fig. 1 lower inset, we calculate for the triplets in Cyy: T/¥'S, D = 0.0115 cm™ and
E = 0.0008 cm'!, respectively, identical to the ZFS parameters determined previously by LESR

[6]. The triplet state is thus nwlyw of about 6A in size, i.e., delocalized over

)
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st of ihe Cgo molecule (7A in diameter). To estimate the triplets life time r we measured the
in-;hase of out-of-phase ADMR signals at 1.65 eV, versus the uwave modulation frequency, as
shown in Fig, 1 upper inset. Assuming longer spin lattice relaxation than r [16], we determine

r at 4K t0 be 5 ms, an order of magnitude longer than in Ref. [6].

The PL spectrum of Cg5r —T/PS is also shown in Fig. 1.--It peaks at 1.65 eV [9-12],
Excitation freque'ncy dependence of the PL at 4K shows that it contains a fast and slow

components. The fast PL is probably due to emission of singlet excitons, whereas the slow

component is due to emission of triplet excitons, as determine by its H-PDMR spectrum [12].

As shown in Fig. 1 (lower inset) the H-PDMR and H-ADMR triplet powder patterns are quite
:'.imilar, however §n < 0, whereas AL > 0. Also the in phase and out-of-phase ADMR and
PDMR frequency dependencies are identical (Fig. 1, upper inse% These two measurements
show that thg;;‘;e induced increase in the triplet recombination rate, which results in

én < 0 is mostly radiative in nature, in agreement with §L > 0. In fact from the values of
§L/L (- 10%) and §n/n (~ - 6 x 10?) we calculate that the triplet PL component is only 1/60

of the total PL signal. This is consistent with our measurements of the PL frequency

dependence, separating the slow and fast components.

The PM spectrum of the C, film, however, is much more complicated [10,11] since it
contains at least 5 PA features, as shown in Fig. 2 (b). These are PA bands C, and C, at 0.8
and 2 eV, respectively, T, and T, at 1.2 and 1.8 eV, respectively, and a derivative-like feature

(E) with zero crossing at 2.4 eV. We found in Cq, films that all PA bands increase as 1%,

I . - I & T~ 1T = _ -

£S:E1 26. P2 NUT
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origin due to their distincdy different laser modulation frequericy (f) and temperature (6)
AW P, B S .

W
k]
3
=
N
dependencies. C,, C, and E depend stronger with f than T, and T, (Figs. 2(a) and 2@)). Also X
T, and T, have a stronger 8 dependence than C;, C, and E; in fact at 8 = 300 K (Fig. 2 (c)) k
T, and T, completely disappear from the PM spectrum. ‘#"
Ql
v
A
—— —  ____ The inset of Fig. 2 (c) shows our electro-absorption (EA) spectrum measured at 300 K - —— — - ;
on the same Cg, film, with fields of 20K V/em, which were modulated at 1 kHz. The EA
spectrum shows strong derivative-like features [10,11] which at their lower energy side are S)j
identical with band E in the PM spectrum. We therefore identify E as due to EA caused by /)
photogenerated electric fields in the film due to photoinduced charge separation. Since the band @7
f\/\/\_/\’W\MM f@
E is more correlated with C; and C,, we tentatively identify C; and C, PA bands as due to &-&

photogenerated charge camers, T, and T, PA bands, on the other hand, are due to neutral 0

Three typical H-ADMR spectra of Cg, film measured at different probe photon energies
are shown in Fig. 3. Each spectrum contains two components with opposite signs and different
P-ADMR spectrum (Fig. 3): a broad (powder pattern) component (AH = 180G) with én/n = -
2 x 10 and a narrow component (AH = 15 G) with §n/n = 102, Correlated with the broad
component, centered at H = 1071 G, there is a negative H-ADMR signal at "half field" at H

= 331 G. This clearly identifies the negative ADMR at full field and half fields as Am, = +1
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42 transitions, rcspect.wely, associated/with dwave sorptions of triplet excitons.

are D = 98 x 10* ¢m! and E = 8 x 10* ¢cm! respectively. D in Cg film is therefore

substantially smaller than in C4q: T/PS glass, showing a larger exciton delocalization in the film;

this is probably caused by an increased intermolecular interaction, In contrast, we identify the
)
narrow, positive ADMR component peaked at 1071 G, as due to spin 4 excitations with g =

2.000.

The P-ADMR spectraof the S = % and S = 1 ADMR components are shown in Fig.
3. The triplet spectrum contains two §n < 0 bands at 1.1 and 1.8 eV, identical to the T, and
T, PA bands in the PM spectrum (Fig. 2(a) and (b)); we conclude that the long-lived neutral
photocxciations in Cq, film are triplet excitons. Their optical transitions in the triplet manifold
are further split compared to the triplets in Cyo; T/PS glass (Fig. 1), probably due to additional
energy relaxation in the film, consistent with their smaller ZFS parameters that we measured.
Also since T, and T, PA bands in Cq, films and glass are both due to triplets, we can calculate

the triplet-triplet annihilation or bimolecular recombination ?e/b in Cg films. This is based on

/

the triplet steady state density in T/PS glass (N,) and in film ()

){and the triplet lifetime (r) in glass, and using the relation b = N,/(@r). We obtain b « /\{fl
10? cm?/sec, one of the largest exciton bimolecular recombination rate constant measured in

solids.

By contrast, the spin %4 P-ADMR spectrum (Fig. 3) contains thres spectral features: two
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2.4 ¢V. The én bands are identical to the C,, C,; and E bands of charge carriers in the PM

spectrum (Fig. 3 (b) and (c)). Similar (but not identical) optical transitions have been measured
in the absorption spectra of Cg,* produced by y irradiation [17], alkali metal doping [18] and
charge transfer from semiconductors colloids [19]. We therefore identify the charge carriers as

spin 1A Cw’.

We have also measured the PL and its H-PDMR spectrum in Cgq film. In-eCo Rlms;—
—/iin glass, the PL at 4K contains also two components; a fast component due to singlet excitons
and a slow component due to triplet excitons; both PL components increase as I;,. We measured
a positive PDMR with an H spectrum identical to the H-ADMR spectrum at 1.6 eV (Fig. 3,
lower inset), which contains only the triplet powder pattern; no spin 14 component was identified

in H-PDMR.

Our results for excited states in Cq; films can be explained by the following scenario:
Upon excitation, singlet excitons ane formed. Some of them decay radiatively giving rise to the
fast PL. component with no PDMR signal. However a significant fraction of the singlet excitons
decay into the triplet manifold. Fast triplet recombination occurs via bimolecular kinetics, which
also may produce charge separation into Cg®. This can explain the wemﬁg!y contradictory
results for the charge excitations in Cg, films, in that their density increase as I, but their
ADMR signal is positive, indicating geminate recombination [12]. This can be reasonably

reconciled assuming that Cyy" generation, not_recombination, has a bimolecular kinetics. The
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An attempt to identify the various transitions in the PM spectrum using the Cg, energy
levels calculation based on CNDO/S, and assuming rigid band apprdximation, is shown in Fig.

<
é\é 2 (b); the energy levels notation is based on the Cg, icosahedral point group symmetry [13]. The
N8

hY

§7§ which, however, can be enhanced by the EA spectrum (Fig. 3 (¢)) [11]. W

- W Then the important Cg, optical transition, (when an
' electron is added at the LUMO level at t,,) is the C; transition (t,, - t,,) at 0.8 eV, which also
appears upon aif.li ;uetal doping [18]. Moreover, the important transitions of Cyy* (when a hole
is _a%gthc HOMO level at h) is the C, transition (g~ h)at2 cvéf-'lfealmost rigid band
approximation can also explain the two optical transitions associated with the photoinduced
triplets. When an electron is promoted to the LUMO level, a hole appears at the HOMO level.
If the relaxation energy associated with the excited states in the triplet manifold is relatively small
(as depicted in Fig. 2 (b)), then the two triplet transitions T, and T; are not far from the C, and

C, transitions of Cy"; this is in agreement with the experiment where C, and C, peak at 0.8 and

We thank J. Shinar for sending us his paper prior to publication. The work at the
University of Utah was supported in part by BP America, the DOE grant no. DE-FG 02-89 ER

45409 and by ONR grant no. N00014-91-C-0104. The work at UCSB was supported by DMR
o //'wi ‘7L

PSPPI P
[

N HOMO (h,) and LUMO (t,,), both with odd parity u, give rise to a x-%°-forbidden transition -

2 eV, respectively, whereas T, and T, are at 1.1 and 1.8 eV, respectively. d/
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PM, PL and P-ADMR spectra of Cg,: T/PS glass at 4K; the PA bands T, and T,
are assigned. Lower inset shows the H-ADMR at 1.65 eV (T,) the H-PDMR
spectra of the PL band at “half™ and "full” fields, respectivel ,M inset shows

the in-phase and out-of-phase ADMR and PDMR signals vs. the pwave

modulation frequency.
PM spectra of Cg, film at different modulation frequency f and sample
temperature 8. (a) f = 20 kHz, 6 = 80 K; (b) f =20 Hz, 6 = 80K; (c) f =
500 Hz, & = 300 K. The PA bands C,, C;, T, T, and E are assigned. The
inset of Fig. 2 (b) shows the C¢, energy levels as calculated in Ref. 13; singlet
and triplet manifolds are depicted on the left and right hand sides, respectively.
The inset in Fig. 2 (c) shows our electro-absorption spectrum, measured on the
same Cy, films; the bands C; and E are derived from the PM spectrum based on
the EA spectrum in the inset.

P-ADMR spectraof the § = %4 (at H = 1071 G) and S = 1 (at H = 1050 G)
componeats of the ADMR signal. The bands C,, C,, T;, T, and E are as in Fig.
2; C, and E bands are derived from the ADMR spectrum as in Fig. 2 (c). Three
typical H-ADMR spectra at 0.8, 1.6 and 2,3 ¢V, respectively are also shown to
demonstrate the two ADMR components in the spectrum: the broad, negative
component is due to triplets, whereas, the narrow, positive component is due to

S = A photoexcitations.
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